Deploying MPLS Traffic Engineering

Santiago Álvarez (saalvare@cisco.com)
Agenda

• Technology Overview
• Bandwidth optimization
• TE for QoS
• Traffic Protection
• Inter-Domain Traffic Engineering
• General Deployment Considerations
Technology Overview
MPLS TE Overview

- Introduces explicit routing
- Supports constraint-based routing
- Supports admission control
- Provides protection capabilities
- Uses RSVP-TE to establish LSPs
- Uses ISIS / OSPF extensions to advertise link attributes
How MPLS TE Works

- Link information Distribution
 - ISIS-TE
 - OSPF-TE
- Path Calculation (CSPF)
- Path Setup (RSVP-TE)
- Forwarding Traffic down Tunnel
 - Auto-route (announce / destinations)
 - Static route
 - PBR
 - CBTS / PBTS
 - Forwarding Adjacency
 - Tunnel select
Link Information Distribution

- Additional link characteristics
 - Interface address
 - Neighbor address
 - Physical bandwidth
 - Maximum reservable bandwidth
 - Unreserved bandwidth (at eight priorities)
 - TE metric
 - Administrative group (attribute flags)
- IS-IS or OSPF flood link information
- All TE nodes build a TE topology database
- Not required if using off-line path computation
Path Calculation

- TE nodes can perform constraint-based routing
- Tunnel head end generally responsible for path calculation
- Constraints and topology database as input to path computation
- Shortest-path-first algorithm ignores links not meeting constraints
- Tunnel can be signaled once a path is found
- Not required if using offline path computation
TE LSP Signaling

- Tunnel signaled with TE extensions to RSVP
- Soft state maintained with downstream PATH messages
- Soft state maintained with upstream RESV messages
- New RSVP objects
 - LABEL_REQUEST (PATH)
 - LABEL (RESV)
 - EXPLICIT_ROUTE
 - RECORD_ROUTE (PATH/RESV)
 - SESSION_ATTRIBUTE (PATH)
- LFIB populated using RSVP labels allocated by RESV messages
Traffic Selection

- Multiple traffic selection options
 - Auto-route
 - Static routes
 - Policy Based Routing
 - Forward Adjacency
 - Pseudowire Tunnel Selection
 - Class / Policy Based Tunnel Selection

- Tunnel path computation independent of routing decision injecting traffic into tunnel

- Traffic enters tunnel at head end
Configuring MPLS TE and Link Information Distribution Using IS-IS (Cisco IOS)

```conf
mpls traffic-eng tunnels
!
interface TenGigabitEthernet0/1/0
  ip address 172.16.0.0 255.255.255.254
  ip router isis
mpls traffic-eng tunnels
mpls traffic-eng attribute-flags 0xF
mpls traffic-eng administrative-weight 20
  ip rsvp bandwidth 100000
!
router isis
  net 49.0001.1720.1625.5001.00
  is-type level-2-only
  metric-style wide
mpls traffic-eng router-id Loopback0
mpls traffic-eng level-2
  passive-interface Loopback0
!
```

- Enable MPLS TE on this node
- Enable MPLS TE on this interface
- Attribute flags
- TE metric
- Maximum reservable bandwidth
- Enable wide metric format and TE extensions (TE Id, router level)
Configuring MPLS TE and Link Information Distribution Using OSPF (Cisco IOS XR)

```
router ospf DEFAULT
area 0

mpls traffic-eng
  interface Loopback0
  passive

mpls traffic-eng router-id Loopback0

! rsvp
interface TenGigE0/0/0/0
  bandwidth 100000

mpls traffic-eng
interface TenGigE0/0/0/0
  admin-weight 5
  attribute-flags 0x8

! Enables TE extensions on this area
! TE router Id
! Configuration mode for RSVP global and interface commands
! Maximum reservable bandwidth
! Configuration mode for MPLS TE global and interface commands
! TE metric
! Attribute flags
```
Configuring MPLS TE and Link Information Distribution Using IS-IS (Cisco NX-OS)

feature isis

feature mpls traffic-eng

interface Ethernet1/1

 mpls traffic-eng tunnels

 mpls traffic-eng administrative-weight 20

 mpls traffic-eng attribute-flags 0xf

 mpls traffic-eng bandwidth 10000000

 no switchport

 ip address 172.16.0.14/31

 ip router isis DEFAULT

 no shutdown

router isis DEFAULT

 mpls traffic-eng level-2

 mpls traffic-eng router-id loopback0

 net 49.0001.1720.1625.5202.00

 is-type level-2

Enable MPLS TE on this node
Enable MPLS TE on this interface
TE metric
Attribute flags
Maximum reservable bandwidth
Enable TE extensions (TE Id, router level)
Configuring Tunnel at Head End (Cisco IOS)

interface Tunnel1
 description FROM-ROUTER-TO-DST1
 ip unnumbered Loopback0
 tunnel destination 172.16.255.3
 tunnel mode mpls traffic-eng
 tunnel mpls traffic-eng priority 5 5
 tunnel mpls traffic-eng bandwidth 10000
 tunnel mpls traffic-eng affinity 0x0 mask 0xF
 tunnel mpls traffic-eng path-option 5 explicit name PATH1
 tunnel mpls traffic-eng path-option 10 dynamic

 !
 ip explicit-path name PATH1 enable
 next-address 172.16.0.1
 next-address 172.16.8.0

 !

Destination (tunnel tail end)
TE tunnel (as opposed to GRE or others)
Setup/hold priorities
Signaled bandwidth
Consider links with 0x0/0xF as attribute flags
Tunnel path options (PATH1, otherwise dynamic)
Explicit PATH1 definition
Configuring Tunnel at Head End (Cisco IOS XR)

```plaintext
explicit-path name PATH1
  index 1 next-address ipv4 unicast 172.16.0.4
  index 2 next-address ipv4 unicast 172.16.0.7
  index 3 next-address ipv4 unicast 172.16.4.2

interface tunnel-te1
  description FROM-ROUTER-TO-DST1
  ipv4 unnumbered Loopback0
  priority 5 5
  signalled-bandwidth 100000
  destination 172.16.255.2
  path-option 10 explicit name PATH1
  path-option 20 dynamic
  affinity f mask f
```

- **Explicit PATH1 definition**
- **MPLS TE P2P tunnel**
- **Setup/hold priorities**
- **Signaled bandwidth**
- **Destination (tunnel tail end)**
- **Tunnel path options (PATH1, otherwise dynamic)**
- **Consider links with 0xF/0xF as attribute flags**
Configuring Tunnel at Head End (Cisco NX-OS)

```
mpls traffic-eng
  explicit-path name PATH1
    index 10 next-address 172.16.0.15
    index 20 next-address 172.16.0.13

interface tunnel-te1
  description FROM-ROUTER-TO-DST1
  ip unnumbered loopback0
  no shutdown
  destination 172.16.255.5
  affinity 0xf mask 0xf
  bandwidth 10000
  path-option 10 explicit name PATH1
  path-option 20 dynamic
  priority 5 5
```
Characteristics of P2MP TE LSP

- Unidirectional
- Explicitly routed
- One head end, but one or more tail ends (destinations)
- Same characteristics (constraints, protection, etc.) for all destinations
P2MP TE LSP Terminology

- **Head-end/Source**: Node where LSP signaling is initiated
- **Mid-point**: Transit node where LSP signaling is processed (not a head-end, not a tail-end)
- **Tail-end/Leaf/destination**: node where LSP signaling ends
- **Branch point**: Node where packet replication is performed
- **Source-to-leaf (S2L) sub-LSP**: P2MP TE LSP segment that runs from source to one leaf
P2MP TE LSP Path Computation

- Constrained Shortest Path First (CSPF) used to compute an adequate tree
- CSPF executed per destination
- TE topology database and tunnel constraints used as input for path computation
- Path constraints may include loose, included, excluded hops
- Same constraints for all destinations (bandwidth, affinities, priorities, etc.)
- Path computation yields explicit path to each destination
- No changes to OSPF/IS-IS TE extensions
- Static paths possible with offline path computation

Path to R4: (R1, R2, R4)
Path to R5: (R1, R2, R5)
P2MP TE LSP Signaling

- Source sends unique PATH message per destination
- LFIB populated using RSVP labels allocated by RESV messages
- Multicast state built by reusing sub-LSP labels at branch points
P2MP TE LSP Traffic Selection
IP Multicast

- One or more IP multicast groups mapped to a Tunnel
- Groups mapped via static IGMP join
- PIM outside of MPLS network
- Modified egress RPF check against TE LSP and tunnel head end (source address)
- Egress node may abstract TE LSP as a virtual interface (LSPVIF) for RPF purposes

<table>
<thead>
<tr>
<th>P2MP Tunnel</th>
<th>Multicast Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel1</td>
<td>(192.168.5.1, 232.0.0.1)</td>
</tr>
<tr>
<td></td>
<td>(192.168.5.1, 232.0.0.2)</td>
</tr>
<tr>
<td>Tunnel2</td>
<td>(192.168.5.1, 232.0.0.3)</td>
</tr>
</tbody>
</table>
Configuring P2MP Tunnel at Head End
(Cisco IOS)

```cisco
mpls traffic-eng destination list name P2MP-LIST-DST1
  ip 172.16.255.1 path-option 10 explicit name PATH1
  ip 172.16.255.2 path-option 10 dynamic
  ip 172.16.255.3 path-option 10 dynamic
  ip 172.16.255.4 path-option 10 dynamic

interface Tunnel1
  description FROM-ROUTER-TO-LIST-DST1
  ip unnumbered Loopback0
  ip pim passive
  ip igmp static-group 232.0.0.1 source 192.168.5.1
  ip igmp static-group 232.0.0.2 source 192.168.5.1
  tunnel mode mpls traffic-eng point-to-multipoint
  tunnel destination list mpls traffic-eng name P2MP-LIST-DST1
  tunnel mpls traffic-eng priority 7 7
  tunnel mpls traffic-eng bandwidth 1000
```
Enable IPv4 multicast over P2MP TE LSP

Tunnel source (172.16.255.5) as next-hop for IP Multicast source (192.168.5.1) RPF check

```
ip multicast mpls traffic-eng
ip mroute 192.168.5.1 255.255.255.255 172.16.255.5
!```
Configuring P2MP Tunnel at Head End (Cisco IOS XR)

```
interface tunnel-mte1
 ipv4 unnumbered Loopback0
 destination 172.16.255.129
 path-option 10 explicit name PATH1
 path-option 20 dynamic

 destination 172.16.255.130
 path-option 10 dynamic

 priority 0 0
 signalled-bandwidth 100000

node-capability label-switched-multicast
 multicast-routing
 address-family ipv4
 interface tunnel-mte1
 enable

 !
 interface all enable

 !
 router igmp
 vrf default
 interface tunnel-mte1
 static-group 232.0.0.1 192.168.5.1
 static-group 232.0.0.2 192.168.5.1

 !
```
Configuring RPF Check at P2MP Tunnel Tail End (Cisco IOS XR)

```
multicast-routing
 address-family ipv4
 core-tree-protocol rsvp-te
 static-rpf 192.168.5.1 32 mpls 172.16.255.3
 interface all enable

! !
```
A TE LSP provides transport for different network services

Low-Latency, BW Protected TE LSP
TE LSP with Reserved BW
L2VPN (Pseudowire)
IP (VPN) Service
MPLS TE Deployment Models

**Bandwidth Optimization**

Planned

- R1
- R2
- R8

IP/MPLS

Reactive

- R1
- R2
- R8

IP/MPLS

**Point-to-Point SLA**

- R1
- R2
- R8

IP/MPLS

**Protection**

- R1
- R2
- R8

IP/MPLS
Bandwidth optimization
Planned Bandwidth Optimization

- Tries to optimize underlying physical topology based on traffic matrix
- Key goal is to avoid link over/under utilization
- On-line (CSPF) or off-line path computation
- May result in a significant number of tunnels
- Should not increase your routing adjacencies

Traffic Matrix

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>R2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>R3</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>R4</td>
<td>9</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>R5</td>
<td>3</td>
<td>7</td>
<td>9</td>
<td>2</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>R6</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>9</td>
<td>12</td>
</tr>
</tbody>
</table>

Physical Topology

Tunnel mesh to satisfy traffic matrix
Traffic Matrix Measurement

- Interface counters on unconstrained tunnels
- Interface MIB
- MPLS LSR MIB
- NetFlow
  - NetFlow BGP Next Hop
  - MPLS-Aware NetFlow
  - Egress/Output NetFlow
- BGP policy accounting
  - Communities
  - AS path
  - IP prefix
AutoTunnel Mesh

• Mesh group: LSRs to mesh automatically
• Membership identified by
  - Matching TE Router ID against ACL
  - IGP mesh-group advertisement
• Each member automatically creates tunnel upon detection of a member
• Tunnels instantiated from template
• Individual tunnels not displayed in router configuration
Auto Bandwidth

- Dynamically adjust bandwidth reservation based on measured traffic
- Optional minimum and maximum limits
- Sampling and resizing timers
- Tunnel resized to largest sample since last adjustment
- Actual resizing can be subject to adjustment threshold and overflow/underflow detection
Configuring AutoTunnel Mesh (Cisco IOS)

```plaintext
mpls traffic-eng tunnels

mpls traffic-eng auto-tunnel mesh
!
interface Auto-Template1
 ip unnumbered Loopback0
tunnel destination mesh-group 10
 tunnel mode mpls traffic-eng
 tunnel mpls traffic-eng autoroute announce
 tunnel mpls traffic-eng path-option 10 dynamic
 tunnel mpls traffic-eng auto-bw frequency 3600
!
router ospf 16
 log-adjacency-changes
 mpls traffic-eng router-id Loopback0
 mpls traffic-eng area 0

mpls traffic-eng mesh-group 10 Loopback0 area 0
 passive-interface Loopback0
 network 172.16.0.0 0.0.255.255 area 0
!
```

Enable Auto-tunnel Mesh
Tunnel template
Template cloned for each member of mesh group 10
Dynamic (CSPF) path to each mesh group member
Tunnels will adjust bandwidth reservation automatically
Advertise mesh group 10 membership in area 0
Configuring AutoTunnel Mesh (Cisco IOS XR)

```plaintext
mpls traffic-eng
auto-tunnel mesh
group 10
attribute-set 10
destination-list DST-RID-ACL!
tunnel-id min 1000 max 2000!
attribute-set auto-mesh 10
autoroute announce
path-selection metric te!
!
```

Enable Auto-tunnel Mesh
Mesh group 10
Attribute set to use
ACL matching matching TE router ids associated with mesh
Range of dynamically created tunnel interfaces
Attribute set definition
• Selective deployment of tunnels when highly-utilized links are identified
• Generally, deployed until next upgrade cycle alleviates congested links
TE for QoS
Motivations

- Point-to-point SLAs
- Admission control
- Integration with DiffServ architecture
- Increased routing control to improve network performance
MPLS TE and DiffServ Deployment Models

- **MPLS TE and no DiffServ**
  - A solution when:
    - No differentiation required
    - Optimization required
  - Limit link load to actual link capacity
  - No notion of traffic classes

- **MPLS TE and DiffServ**
  - A solution when:
    - Differentiation required
    - Optimization required
  - Limit class capacity to expected class load
  - Limit class load to actual class capacity for one class

- **DiffServ-Aware TE and DiffServ**
  - A solution when:
    - Strong differentiation required
    - Fine optimization required
  - Limit class capacity to expected class load
  - Limit class load to actual class capacity for at least two classes
DiffServ-Aware Traffic Engineering

• Enables per-class traffic engineering
• IS-IS or OSPF flood link information (as usual)
• Per-class unreserved bandwidth on each link
• New RSVP object (CLASSTYPE)
• Nodes manages link bandwidth using a bandwidth constraint model
• Two models defined
  Maximum Allocation Model (MAM)
  Russian Doll Model (RDM)
• Unique class definition and constraint model throughout network
• Two classes (class-types) in current implementations

Bandwidth Constraints
Class-type 1 (voice) 20%
Class-type 2 (video) 40%
Maximum Allocation Model (MAM)

- BW pool applies to one class
- Sum of BW pools may exceed MRB
- Sum of total reserved BW may not exceed MRB
- Current implementation supports BC0 and BC1
Russian Dolls Model (RDM)

- BW pool applies to one or more classes
- Global BW pool (BC0) equals MRB
- BC0..BCn used for computing unreserved BW for class n
- Current implementation supports BC0 and BC1
Class-Based Tunnel Selection: CBTS

- EXP-based selection between multiple tunnels to same destination
- Local mechanism at head-end (no IGP extensions)
- Tunnel master bundles tunnel members
- Tunnel selection configured on tunnel master (auto-route, etc.)
- Bundle members configured with EXP values to carry
- Bundle members may be configured as default
- Supports VRF traffic, IP-to-MPLS and MPLS-to-MPLS switching paths
Policy-based Tunnel Selection: PBTS

- EXP-based selection between multiple tunnels to same destination
- Local mechanism at ahead-end
- Tunnels configured via policy-class or forwarding-class with EXP values to carry
- No IGP extensions
- Supports VRF traffic, IP-to-MPLS and MPLS-to-MPLS switching

<table>
<thead>
<tr>
<th>FIB</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix1, exp 5</td>
<td>tunnel-te1</td>
</tr>
<tr>
<td>Prefix1, *</td>
<td>tunnel-te2</td>
</tr>
<tr>
<td>Prefix2, exp 5</td>
<td>tunnel-te3</td>
</tr>
<tr>
<td>Prefix2, exp 2</td>
<td>tunnel-te4</td>
</tr>
<tr>
<td>Prefix2, *</td>
<td>tunnel-te5</td>
</tr>
<tr>
<td>Prefix3, exp 5</td>
<td>tunnel-te6</td>
</tr>
<tr>
<td>Prefix3, *</td>
<td>tunnel-te7</td>
</tr>
</tbody>
</table>
Traffic Protection
Traffic Protection Using MPLS TE Fast Re-Route (FRR)

- Sub-second recovery against node/link failures
- Scalable 1:N protection
- Greater protection granularity
- Cost-effective alternative to 1:1 protection
- Bandwidth protection

IP/MPLS

Primary TE LSP

Backup TE LSP
FRR Link Protection Operation

• Requires pre-signalled next-hop (NHOP) backup tunnel
• Point of Local Repair (PLR) swaps label and pushes backup label
• Backup terminates on Merge Point (MP) where traffic re-joins primary
• Restoration time expected under ~50 ms
FRR Node Protection Operation

- Requires **pre-signalled next-next-hop** (NNHOP) backup tunnel
- Point of Local Repair (PLR) swaps **next-hop label** and pushes backup label
- Backup terminates on Merge Point (MP) where traffic re-joins primary
- Restoration time depends on failure detection time
Bidirectional Forwarding Detection Trigger for FRR

- FRR relies on quick PLR failure detection
- Some failures may not produce loss of signal or alarms on a link
- BFD provides light-weight neighbor connectivity failure detection
- Preferred over RSVP Hellos
Bandwidth Protection

- Backup tunnel with associated bandwidth capacity
- Backup tunnel may or may not actually signal bandwidth
- PLR will decide best backup to protect primary
  - nhop/nnhop
  - backup-bw
  - class-type
  - node-protection flag
AutoTunnel: Primary Tunnels

What’s the Problem?

• FRR can protect TE Traffic
• No protection mechanism for IP or LDP traffic
• How to leverage FRR for all traffic?
• What if protection desired without traffic engineering?
AutoTunnel: Primary Tunnels
What’s the Solution?

Forward all traffic through a one-hop protected primary TE tunnel

- Create protected one-hop tunnels on all TE links
  
  - Priority 7/7
  - Bandwidth 0
  - Affinity 0x0/0xFFFF
  - Auto-BW OFF
  - Auto-Route ON
  - Fast-Reroute ON
  - Forwarding-Adj OFF
  - Load-Sharing OFF

- Tunnel interfaces not shown on router configuration
- Configure desired backup tunnels (manually or automatically)
Configuring AutoTunnel Primary Tunnels (Cisco IOS)

```
mpls traffic-eng tunnels
mpls traffic-eng auto-tunnel primary onehop
mpls traffic-eng auto-tunnel primary tunnel-num min 900 max 999
!
```

Enable auto-tunnel primary

Range for tunnel interfaces
AutoTunnel: Backup Tunnels
What’s the Problem?

- MPLS FRR requires backup tunnels to be preconfigured
- Automation of backup tunnels is desirable
AutoTunnel: Backup Tunnels
What’s the Solution?

Create backup tunnels automatically as needed

- Detect if a primary tunnel requires protection and is not protected
- Verify that a backup tunnel doesn’t already exist
- Compute a backup path to NHOP and NNHOP excluding the protected facility
- Optionally, consider shared risk link groups during backup path computation
- Signal the backup tunnels
Enable auto-tunnel backup (NHOP tunnels only)

Range for tunnel interfaces

Tear down unused backup tunnels

Consider SRLGs preferably

```
mpls traffic-eng tunnels
mpls traffic-eng auto-tunnel backup nhop-only
mpls traffic-eng auto-tunnel backup tunnel-num min 1900 max 1999
mpls traffic-eng auto-tunnel backup timers removal unused 7200
mpls traffic-eng auto-tunnel backup srlg exclude preferred
```
Configuring AutoTunnel Backup Tunnels (Cisco IOS XR)

```
ipv4 unnumbered mpls traffic-eng Loopback 0
!
mpls traffic-eng
interface GigabitEthernet0/0/0/0
 auto-tunnel backup
 exclude srlg preferred
 nhop-only
!
!
auto-tunnel backup
 timers removal unused 7200
 tunnel-id min min 1900 max 1999
!
!
```

- Source interface for backup tunnels
- Protect interface with dynamically created backup tunnels
- Consider SRLGs preferably
- Create NHOP backup tunnel only
- Tear down unused backup tunnels
- Range for tunnel interfaces

Protect interface with dynamically created backup tunnels

Tear down unused backup tunnels
Shared Risk Link Group (SRLG)

- Some links may share same physical resource (e.g. fiber, conduit)
- AutoTunnel Backup can force or prefer exclusion of SRLG to guarantee diversely routed backup tunnels
- IS-IS and OSPF flood SRLG membership as an additional link attribute
What About Path Protection?

- Primary and standby share head and tail, but expected to be diversely routed
- Generally higher restoration times compared to local protection
- Doubles number of TE LSPs (1:1 protection)
- May be an acceptable solution for restricted topologies (e.g. rings)
- Cisco IOS
  - Separate path option sequences for primary and standby
  - Explicit paths only
  - No path diversity
- Cisco IOS XR
  - Single path-option sequence for primary and standby
  - Explicit and dynamic paths
  - Automatic path diversity (node-link, node, link)
P2MP TE LSP Traffic Protection

- No new protocol extensions to support FRR
- Protection requirement applies to all destinations
- P2P LSP as backup tunnel for a sub-LSP
- No changes to label stacking procedure
- Only link protection supported
- Head-end protection requires path redundancy (live-standby / live-live)
Head End Resiliency Models

**Live-Standby**

- Redundant TE LSPs with different ingress PEs
- LSPs may or may not be disjoint
- Link failures generally protected via FRR
- Several bandwidth options for Standby TE LSP
  - Same bandwidth reservation as Live path
  - No bandwidth reservation
  - Adaptive bandwidth reservation (auto-bandwidth)

**Live-Live**

- Redundant P2MP LSPs with different ingress and egress PEs
- LSPs are generally disjoint
- Receiver or near-receiver stream selection and switchover
- FRR generally not a requirement
- Same bandwidth reservation on both TE LSPs
Inter-Domain Traffic Engineering
Inter-Domain Traffic Engineering: Introduction

• Domain defined as an IGP area or autonomous system
• Head end lacks complete network topology to perform path computation in both cases
• Two path computation approaches
  - Per-domain (ERO loose-hop expansion)
  - Distributed (Path Computation Element)
Per-Domain Path Computation Using ERO Loose-hop Expansion

ERO (Loose) R7
R1 Topology database

ERO
ASBR4 (Loose) R7 (Loose)

ERO
R3, ASBR3, ASBR4 R7 (Loose)

ERO
R7 (Loose)

ERO
ASBR4 (Loose) R7 (Loose)

ERO
R5, R7

Inter-AS TE LSP
Distributed Path Computation using Path Computation Element

Backward Recursive PCE-based Computation (BRPC)

Path Computation Request
Path Computation Reply
Path Computation Element
TE LSP

Path1 (cost 300): ABR2, R4, R6 R7
Path2 (cost 200): ABR4, R5, R7
Path3 (cost 400): ABR1, ABR2, R4, R6 R7

Virtual Shortest Path Tree

Path (cost 500): R3, ABR3, ABR4, R5, R7

R1 Topology database

ABR1 Topology database (area 0)

ABR2 Topology database (area 3)
Configuring PCE (Cisco IOS XR)

**Headend**

```conf
interface tunnel-te1
 description FROM-ROUTER-TO-DST2
 ipv4 unnumbered Loopback0
destination 172.16.255.1
 path-option 10 dynamic pce
!
router static
 address-family ipv4 unicast
 172.16.255.1/32 tunnel-te1
!
```

**PCE**

```conf
mpls traffic-eng
 pce deadtimer 30
 pce address ipv4 172.16.255.129
 pce keepalive 10
!
```

- Use discovered PCEs for path computation
- Static route mapping IP traffic to tunnel-te1
- Declare peer down if no keepalive in 30s
- Advertise PCE capability with address 172.16.255.129
- Send per keepalive every 10s
Inter-Domain TE – Fast Re-route

- Same configuration as single domain scenario
- Support for node-id sub-object required to implement ABR/ASBR node protection
- Node-id helps point of local repair (PLR) detect a merge point (MP)
Inter-Domain TE
Take into Account before Implementing

• Semantics of link attributes across domain boundaries
• Semantics of TE-Classes across domain boundaries for DS-TE
• Auto-route destinations creates a static route to tunnel destination and facilitates traffic selection
• Auto-route announce not applicable for traffic selection
General Deployment Considerations
Should RSVP-TE and LDP be Used Simultaneously?

• Guarantees forwarding of VPN traffic if a TE LSP fails
• May be required if full mesh of TE LSPs not in use
• Increased complexity
How Far should Tunnels Span?

- **PE-to-PE Tunnels**
  - More granular control on traffic forwarding
  - Larger number of TE LSPs

- **P-to-P Tunnels**
  - Requires IP tunnels or LDP over TE tunnels to carry VPN traffic (deeper label stack)
  - Fewer TE LSPs
  - May be extended with PE-P tunnels
MPLS TE on Link Bundles

- Different platforms support different link bundles:
  - Ethernet
  - POS
  - Multilink PPP
- Bundles appear as single link in topology database
- Same rules for link state flooding
- LSP preemption if bundle bandwidth becomes insufficient
- Configurable minimum number of links to maintain bundle active
- Bundle failure can act as trigger for FRR
Per-Service Tunnel Selection

• Services (L2VPN / L3VPN) generally receive a path automatically
  – Recursive resolution of BGP next hops
  – Recursive resolution of LDP peers

• L2VPN provides more granular per-tunnel control using pseudowire tunnel selection

• When using BGP (L2VPN, L3VPN, IP):
  – On tail end, add loopback at destination for each service that needs separate forwarding
  – On tail end, add policy to modify next-hop on BGP updates
  – On head end, add static route to force BGP next hops down specific paths
Summary

- **Technology Overview**
  - Explicit and constrained-based routing
  - TE protocol extensions (OSPF, ISIS and RSVP)
  - P2P and P2MP TE LSP
- **Bandwidth optimization**
  - Planned (full mesh, auto-tunnel)
  - Reactive
- **TE for QoS**
  - DS-TE (MAM, RDM)
  - CBTS

- **Traffic Protection**
  - Link/node protection (auto-tunnel)
  - Bandwidth protection
- **Inter-Domain Traffic Engineering**
  - Inter-Area
  - Inter-AS (Authentication, policy control)
- **General Deployment Considerations**
  - MPLS TE and LDP
  - PE-to-PE vs. P-to-P tunnels
  - TE over Bundles
  - Per-Service Tunnel Selection
Recommended Reading

Traffic Engineering with MPLS

Eric Osborne
Ajay Sinha

ciscopress.com

QoS for IP/MPLS Networks

Santiago Alvarez

ciscopress.com

Definitive MPLS Network Designs

Jim Guichard, CCIE No. 2089
François La Faucheur
Jean-Philippe Vasseur

ciscopress.com
Call to Action

• **Visit** the Cisco Campus at the World of Solutions to experience the following demos/solutions in action:
  nV technology in IPNGN: IP NGN

• **Get** hands-on experience with the following Walk-in Labs
  - LABCIE-2002: CCIE Routing and Switching - MPLS/VPN Practice Lab
  - LABMPL-2555: Label Switched Multicast Hands-on
  - LABSPG-2020: Unified MPLS in practice

• **Meet** the Engineer
  Tue, Jan 29 10:00 – 15:00
  Wed, Jan 30 11:00 – 13:00
  Thu, Jan 31 8:00 – 12:00

• **Discuss** your project’s challenges at the Technical Solutions Clinics
Your feedback is important to us.

Complete the session survey at: www.ciscolivelondon.com/onsite or via the Cisco Live Mobile App
Backup Slides
Configuring MPLS TE and Link Information Distribution Using OSPF (Cisco IOS)

```plaintext
mpls traffic-eng tunnels
!
interface TenGigabitEthernet0/1/0
 ip address 172.16.0.0 255.255.255.254
mpls traffic-eng tunnels
mpls traffic-eng attribute-flags 0xF
mpls traffic-eng administrative-weight 20
ip rsvp bandwidth 100000
!
router ospf 100
 log-adjacency-changes
 passive-interface Loopback0
 network 172.16.0.0 0.0.255.255 area 0
mpls traffic-eng router-id Loopback0
mpls traffic-eng area 0
!
```

- Enable MPLS TE on this node
- Enable MPLS TE on this interface
- Attribute flags
- TE metric
- Maximum reservable bandwidth
- Enable TE extensions (TE router id and area)
Configuring MPLS TE and Link Information Distribution Using IS-IS (Cisco IOS XR)

```plaintext
router isis DEFAULT
 is-type level-2-only
 net 49.0001.1720.1625.5129.00
 address-family ipv4 unicast
 mpls-style wide
 mpls traffic-eng level 2
 mpls traffic-eng router-id Loopback0

 !
 interface Loopback0
 passive
 address-family ipv4 unicast

 !
 interface TenGigE0/0/0/0
 address-family ipv4 unicast

 !
 !
 rsvp
 interface TenGigE0/0/0/0
 bandwidth 100000

 !
 !
 mpls traffic-eng
 interface TenGigE0/0/0/0
 admin-weight 5
 attribute-flags 0x8
```

Enable wide metric format and TE extensions (TE Id, router level)

Configuration mode for RSVP global and interface commands

Maximum reservable bandwidth

Configuration mode for MPLS TE global and interface commands

TE metric

Attribute flags
P2MP TE LSP Traffic Selection
Static P2MP Pseudowires

• Provides a layer-2 multicast service with segmentation
• Multicast forwarding plane from root to leaves (all traffic types: multicast, broadcast, unicast)
• Unicast forwarding plane from leaves to root
• Initial implementation supporting only static pseudowire
• Label bindings defined statically on root and leaves
• No control plane (targeted LDP)
• No context-specific label space on leaves
Network with MPLS TE

- A solution when:
  - No differentiation required
  - Optimization required
- Full mesh or selective deployment to avoid over-subscription
- Increased network utilization
- Adjust link load to actual link capacity
- No notion of traffic classes
Network with MPLS DiffServ and MPLS TE

- A solution when:
  - Differentiation required
  - Optimization required
- Adjust class capacity to expected class load
- Adjust class load to actual class capacity for one class
- Alternatively, adjust link load to actual link capacity
Network with MPLS DiffServ and MPLS DS-TE

• A solution when:
  Strong differentiation required
  Fine optimization required
• Control both load and capacity per class
• Adjust class capacity to expected class load
• Adjust class load to actual class capacity
Pre-standard DS-TE Implementation

- Only supports Russian Dolls Model (RDM) for bandwidth constraints
- No changes to RSVP-TE specs to signal desired pool (leverages ADSPEC object in PATH messages)
  - Sub-pool TE LSPs signaled as guaranteed service
  - Global pool TE LSPs signaled as controlled-load service
- Modified OSPF-TE and ISIS-TE advertisements to include two pools at 8 priority levels each (16 entries per link total)
- Available on IOS and IOS XR
What Is New in IETF DS-TE Implementation?

• Supports both RDM and MAM (Maximum Allocation Model) for bandwidth constraints

• New CLASSTYPE object in RSVP-TE to signal desired class-type (unused by “class-type 0” for backward compatibility with non-DS-TE)

• Minor Changes to OSPF-TE and ISIS-TE bandwidth advertisements
  
  Same “unreserved bandwidth” sub-TLV (8 entries) as non-DS-TE interpreted according to local definition of TE-Class (class-type/preemption priority)
  
  New BC sub-TLV

• Operates in migration or IETF mode in Cisco IOS

• Developed simultaneously for IOS and IOS XR
# TE-Class Definition Examples

**TE-Class definition MUST be consistent throughout the network**

## Default TE-Class definition

<table>
<thead>
<tr>
<th>Priority 0</th>
<th>Priority 1</th>
<th>Priority 2</th>
<th>Priority 3</th>
<th>Priority 4</th>
<th>Priority 5</th>
<th>Priority 6</th>
<th>Priority 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT0 (Global)</td>
<td>TE-Class4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TE-Class0</td>
</tr>
<tr>
<td>CT1 (Sub)</td>
<td>TE-Class5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TE-Class1</td>
</tr>
</tbody>
</table>

## TE-Class definition compatible with non-DS-TE

<table>
<thead>
<tr>
<th>Priority 0</th>
<th>Priority 1</th>
<th>Priority 2</th>
<th>Priority 3</th>
<th>Priority 4</th>
<th>Priority 5</th>
<th>Priority 6</th>
<th>Priority 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT0 (Global)</td>
<td>TE-Class0</td>
<td>TE-Class1</td>
<td>TE-Class2</td>
<td>TE-Class3</td>
<td>TE-Class4</td>
<td>TE-Class5</td>
<td>TE-Class6</td>
</tr>
<tr>
<td>CT1 (Sub)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

## User-defined TE-Classes with no preemption between class-types

<table>
<thead>
<tr>
<th>Priority 0</th>
<th>Priority 1</th>
<th>Priority 2</th>
<th>Priority 3</th>
<th>Priority 4</th>
<th>Priority 5</th>
<th>Priority 6</th>
<th>Priority 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT0 (Global)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT1 (Sub)</td>
<td>TE-Class0</td>
<td>TE-Class1</td>
<td>TE-Class2</td>
<td>TE-Class3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

## User-defined TE-Classes with preemption between/within class-types

<table>
<thead>
<tr>
<th>Priority 0</th>
<th>Priority 1</th>
<th>Priority 2</th>
<th>Priority 3</th>
<th>Priority 4</th>
<th>Priority 5</th>
<th>Priority 6</th>
<th>Priority 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT0 (Global)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT1 (Sub)</td>
<td>TE-Class0</td>
<td>TE-Class1</td>
<td>TE-Class2</td>
<td>TE-Class3</td>
<td>TE-Class4</td>
<td>TE-Class5</td>
<td>TE-Class6</td>
</tr>
</tbody>
</table>
# MAM vs. RDM

<table>
<thead>
<tr>
<th>MAM</th>
<th>RDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>One BC per CT</td>
<td>One or more CTs per BC</td>
</tr>
<tr>
<td>Sum of all BCs may exceed maximum reservable bandwidth</td>
<td>BC0 always equals to maximum reservable bandwidth</td>
</tr>
<tr>
<td>Preemption not required to provide bandwidth guarantees per CT</td>
<td>Preemption required to provide bandwidth guarantees per CT</td>
</tr>
<tr>
<td>Bandwidth efficiency and protection against QoS degradation are mutually exclusive</td>
<td>Provides bandwidth efficiency and protection against QoS degradation simultaneously</td>
</tr>
</tbody>
</table>
Configuring DS-TE Classes and Bandwidth Constraints (Cisco IOS)

RDM

```plaintext
mpls traffic-eng tunnels
mpls traffic-eng ds-te mode ietf
mpls traffic-eng ds-te te-classes
te-class 0 class-type 1 priority 0
te-class 1 class-type 1 priority 1
te-class 2 class-type 1 priority 2
te-class 3 class-type 1 priority 3
te-class 4 class-type 0 priority 4
te-class 5 class-type 0 priority 5
te-class 6 class-type 0 priority 6
te-class 7 class-type 0 priority 7

! interface TenGigabitEthernet0/1/0
 ip address 172.16.0.0 255.255.255.254
 mpls traffic-eng tunnels
 ip rsvp bandwidth rdm bc0 155000 bc1 55000
```

Enable IETF DS-TE
Explicit TE-Class definition
RDM bandwidth constraints

MAM

```plaintext
mpls traffic-eng tunnels
mpls traffic-eng ds-te mode ietf
mpl traffic-eng ds-te bc-model mam

! interface TenGigabitEthernet0/1/0
 ip address 172.16.0.0 255.255.255.254
 mpls traffic-eng tunnels
 ip rsvp bandwidth mam max-reservable-bw 155000 bc0 100000 bc1 55000
```

Enable IETF DS-TE and use default TE-Class definition
Enable MAM
MAM bandwidth constraints
Configuring DS-TE Tunnel (Cisco IOS)

interface Tunnel1
  description FROM-ROUTER-TO-DST1-CT0
  ip unnumbered Loopback0
  no ip directed-broadcast
  tunnel destination 172.16.255.3
  tunnel mode mpls traffic-eng
  tunnel mpls traffic-eng priority 5 5
  tunnel mpls traffic-eng bandwidth 100000 class-type 0
  tunnel mpls traffic-eng path-option 10 dynamic

interface Tunnel2
  description FROM-ROUTER-TO-DST1-CT1
  ip unnumbered Loopback0
  no ip directed-broadcast
  tunnel destination 172.16.255.3
  tunnel mode mpls traffic-eng
  tunnel mpls traffic-eng priority 0 0
  tunnel mpls traffic-eng bandwidth 50000 class-type 1
  tunnel mpls traffic-eng path-option 10 dynamic

Signal Tunnel1 with CT0 (priority and CT must match valid TE-Class)
Signal Tunnel2 with CT1 (priority and CT must match valid TE-Class)
Configuring DS-TE Classes and Bandwidth Constraints (Cisco IOS XR)

RDM

```
rsvp
 interface TenGigE0/0/0/0/0
 bandwidth rdm bc0 155000 bc1 55000
 !

mpls traffic-eng
 interface TenGigE0/0/0/0/0
 !
 ds-te mode ietf
```

```
ds-te te-classes
 te-class 0 class-type 1 priority 0
 te-class 1 class-type 1 priority 1
 te-class 2 class-type 1 priority 2
 te-class 3 class-type 1 priority 3
 te-class 4 class-type 0 priority 4
 te-class 5 class-type 0 priority 5
 te-class 6 class-type 0 priority 6
 te-class 7 class-type 0 priority 7
 !
```

```
rsvp
 interface TenGigE0/0/0/0/0
 bandwidth rdm max-reservable-bw bc0 100000 bc1 55000
 !

mpls traffic-eng
 interface TenGigE0/0/0/0/0
 !
 ds-te mode ietf
 ds-te bc-model mam
```

MAM

Enable IETF DS-TE and use default TE-Class definition

Enable MAM

Enable IETF DS-TE

Explicit TE-Class definition

RDM bandwidth constraints
Configuring DS-TE Tunnels (Cisco IOS XR)

interface tunnel-te1
  description FROM-ROUTER-TO-DST1-CT0
  ipv4 unnumbered Loopback0
  priority 5 5
  signalled-bandwidth 100000 class-type 0
  destination 172.16.255.2
  path-option 10 dynamic

interface tunnel-te2
  description FROM-ROUTER-TO-DST1-CT1
  ipv4 unnumbered Loopback0
  priority 0 0
  signalled-bandwidth 50000 class-type 1
  destination 172.16.255.2
  path-option 10 dynamic

Signal tunnel-te1 with CT0 (priority and CT must match valid TE-Class)
Signal tunnel-te2 with CT1 (priority and CT must match valid TE-Class)
Configuring CBTS (Cisco IOS)

interface Tunnel1
  ip unnumbered Loopback0
  tunnel destination 172.16.255.2
  tunnel mode mpls traffic-eng
  tunnel mpls traffic-eng bandwidth 50000 class-type 1
  tunnel mpls traffic-eng path-option 10 dynamic
  tunnel mpls traffic-eng exp 5

interface Tunnel2
  ip unnumbered Loopback0
  tunnel destination 172.16.255.2
  tunnel mode mpls traffic-eng
  tunnel mpls traffic-eng bandwidth 100000 class-type 0
  tunnel mpls traffic-eng path-option 10 dynamic
  tunnel mpls traffic-eng exp default

interface Tunnel10
  ip unnumbered Loopback0
  tunnel destination 172.16.255.2
  tunnel mode mpls traffic-eng
  tunnel mpls traffic-eng exp-bundle master
  tunnel mpls traffic-eng exp-bundle member Tunnel1
  tunnel mpls traffic-eng exp-bundle member Tunnel2
  ip route 192.168.0.0 255.255.255.0 Tunnel10

Tunnel1 will carry packets with MPLS EXP 5
Tunnel2 will carry packets with MPLS EXP other than 5
Tunnel10 defined as bundle master with Tunnel2 and Tunnel1 as members
CBTS performed on prefix 192.168.0.0/24 using Tunnel10
Configuring PBTS (Cisco IOS XR)

interface tunnel-te1
  ipv4 unnumbered Loopback0
  autoroute announce
  signalled-bandwidth 10000
  destination 172.16.255.2
  policy-class 5
    path-option 10 explicit name PATH1
    path-option 20 dynamic
 !
interface tunnel-te2
  ipv4 unnumbered Loopback0
  autoroute announce
  signalled-bandwidth 50000
  destination 172.16.255.2
  path-option 10 explicit name PATH2
  path-option 20 dynamic

Tunnel-te1 will carry packets with MPLS EXP 5
Tunnel-te2 will carry packets with MPLS EXP other than 5 (default tunnel)
Tunnel-based Admission Control

- Tunnel aggregates RSVP (IPv4) flows
- No per-flow state in forwarding plane (only DiffServ)
- No per-flow state in control plane within MPLS TE network
- RSVP enhancements enable end-to-end admission control solution (Receiver Proxy, Sender Notification, Fast Local Repair)
Configuring Tunnel-based Admission Control (Cisco IOS)

interface Tunnel1
  ip unnumbered Loopback0
  tunnel destination 172.16.255.2
  tunnel mode mpls traffic-eng
  tunnel mpls traffic-eng autoroute announce
  tunnel mpls traffic-eng priority 7 7
  tunnel mpls traffic-eng bandwidth 100000
  tunnel mpls traffic-eng path-option 10 dynamic
  ip rsvp policy local default
    maximum senders 200
    maximum bandwidth single 1000
    forward all
  ip rsvp bandwidth 100000

interface GigabitEthernet3/3/0
  ip address 192.168.0.1 255.255.255.254
  service-policy output OUT-POLICY
  ip rsvp bandwidth percent 10
  ip rsvp listener outbound reply
  ip rsvp data-packet classification none
  ip rsvp resource-provider none

ip rsvp qos

Signaled bandwidth
RSVP local policy (200 flows max, 1Mbps per flow max)
Maximum reservable bandwidth
Interface QoS policy (DiffServ)
Maximum reservable bandwidth
Act as RSVP receiver proxy on this interface
No RSVP flow classification
No RSVP flow queuing
Enable per-flow RSVP
Configuring FRR (Cisco IOS)

Primary Tunnel

```text
interface Tunnel1
 description FROM-ROUTER-TO-DST1-FRR
 ip unnumbered Loopback0
 tunnel destination 172.16.255.2
 tunnel mode mpls traffic-eng
 tunnel mpls traffic-eng bandwidth 20000
 tunnel mpls traffic-eng path-option 10 dynamic
 tunnel mpls traffic-eng fast-reroute
```

Backup Tunnel

```text
interface Tunnel1
 description NNHOP-BACKUP
 ip unnumbered Loopback0
 tunnel destination 172.16.255.2
 tunnel mode mpls traffic-eng
 tunnel mpls traffic-eng path-option 10 explicit name PATH1
!
interface TenGigabitEthernet1/0/0
 ip address 172.16.192.5 255.255.255.254
 mpls traffic-eng tunnels
 mpls traffic-eng backup-path Tunnel1
 ip rsvp bandwidth
!```
Configuring FRR (Cisco IOS XR)

Primary Tunnel

```
interface tunnel-te1
description FROM-ROUTER-TO-DST1-FRR
ipv4 unnumbered Loopback0
signalled-bandwidth 30000
destination 172.16.255.2
fast-reroute
path-option 10 dynamic
```

Backup Tunnel

```
interface tunnel-te1
description NHOP-BACKUP
ipv4 unnumbered Loopback0
destination 172.16.255.130
path-option 10 explicit name PATH1
!
mpls traffic-eng
interface TenGigE0/0/0/0
backup-path tunnel-te 1
!
```

Indicate the desire for local protection during signaling

Explicitly routed backup to 172.16.255.130 with zero bandwidth

Use tunnel-te1 as backup for protected LSPs through TenGigE0/0/0
AutoTunnel: Primary Tunnels
Why One-Hop Tunnels?

• CSPF and SPF yield same results (absence of tunnel constraints)
• Auto-route forwards all traffic through one-hop tunnel
• Traffic logically mapped to tunnel but no label imposed (imp-null)
• Traffic is forwarded as if no tunnel was in place
AutoTunnel: Backup Tunnels
What’s the Solution? (Cont.)

• Backup tunnels are preconfigured
 - Priority: 7/7
 - Bandwidth: 0
 - Affinity: 0x0/0xFFFF
 - Auto-BW: OFF
 - Auto-Route: OFF
 - Fast-Reroute: OFF
 - Forwarding-Adj: OFF
 - Load-Sharing: OFF

• Backup tunnel interfaces and paths not shown on router configuration
Configuring SRLG (Cisco IOS)

mpls traffic-eng tunnels
mpls traffic-eng auto-tunnel backup nhop-only

mpls traffic-eng auto-tunnel backup srlg exclude force

! interface TenGigabitEthernet0/1/0
 ip address 172.16.0.0 255.255.255.254
mpls traffic-eng tunnels

mpls traffic-eng srlg 15

mpls traffic-eng srlg 25

ip rsvp bandwidth

! interface TenGigabitEthernet1/0/0
 ip address 172.16.0.2 255.255.255.254
mpls traffic-eng tunnels

mpls traffic-eng srlg 25

ip rsvp bandwidth

! Force SRLG exclusion during backup path computation

Interface member of SRLG 15 and 25

Interface member of SRLG 25
Configuring Path Protection (Cisco IOS)

interface Tunnel1
ip unnumbered Loopback0
 tunnel mode mpls traffic-eng
tunnel destination 172.16.255.2
tunnel mpls traffic-eng autoroute announce
 tunnel mpls traffic-eng path-option 10 explicit name PATH1
 tunnel mpls traffic-eng path-option 20 explicit name PATH2
 !
 tunnel mpls traffic-eng path-option protect 10 explicit name PPATH1
 tunnel mpls traffic-eng path-option protect 20 explicit name PPATH2

Standby path to be used for PATH1

Standby path to be used for PATH2
Configuring Enhanced Path Protection (Cisco IOS)

Use path list to protect primary path

List of standby paths

```
mpls traffic-eng path-option list name PATH-LST
  path-option 10 explicit name PE1-P3-P4-PE2
  path-option 20 explicit name PE1-P5-P6-PE2
  path-option 30 explicit name PE1-P7-P8-PE2
!
interface Tunnel1
  ip unnumbered Loopback0
  tunnel mode mpls traffic-eng
  tunnel destination 172.16.255.2
  tunnel mpls traffic-eng autoroute announce
  tunnel mpls traffic-eng path-option 10 explicit name PE1-P1-P2-PE2
!
tunnel mpls traffic-eng path-option protect 10 list name PATH-LST
```
interface tunnel-te1
description FROM-ROUTER-TO-DST1
ipv4 unnumbered Loopback0
signalled-bandwidth 100000
destination 172.16.255.2
affinity f mask f

path-protection
path-option 10 explicit name PATH1
path-option 20 explicit name PATH2
path-option 30 dynamic
!

Signal an acceptable (node-link, node, link diverse) standby TE LSP based on path-option sequence
Inter-Domain TE – TE LSP Reoptimization

- Reoptimization can be timer/event/admin triggered
- Head end sets ‘path re-evaluation request’ flag (SESSION_ATTRIBUTE)
- Head end receives PathErr message notification from boundary router if a preferable path exists
- Make-before-break TE LSP setup can be initiated after PathErr notification
Configuring Inter-Area Tunnels (Cisco IOS)

```plaintext
mpls traffic-eng tunnels
!
interface Tunnel1
  ip unnumbered Loopback0
  no ip directed-broadcast
  tunnel destination 172.16.255.7
  tunnel mode mpls traffic-eng
    tunnel mpls traffic-eng path-option 10 explicit name LOOSE-PATH
!
ip route 172.16.255.7 255.255.255.255 Tunnel1
!
ip explicit-path name LOOSE-PATH enable
  next-address loose 172.16.255.3
  next-address loose 172.16.255.5
!
```

- **Loose-hop path**
- **Static route mapping**
- **IP traffic to Tunnel1**
- **List of ABRs as loose hops**
Configuring Inter-Area Tunnels with Autoroute Destinations (Cisco IOS)

```
interface Tunnel1
  ip unnumbered Loopback0
  tunnel mode mpls traffic-eng
  tunnel destination 172.16.255.7
  tunnel mpls traffic-eng autoroute destination
  tunnel mpls traffic-eng path-option 10 explicit name LOOSE-PATH
!
ip explicit-path name LOOSE-PATH enable
  next-address loose 172.16.255.3
  next-address loose 172.16.255.5
!
```

Create static route to tunnel destination (172.16.255.7)
Loose-hop path
List of ABRs as loose hops
Configuring Inter-Area Tunnels (Cisco IOS XR)

```plaintext
explicit-path name LOOSE-PATH

index 1 next-address loose ipv4 unicast 172.16.255.129
index 2 next-address loose ipv4 unicast 172.16.255.131

! interface tunnel-te1
description FROM-ROUTER-TO-DST3
ipv4 unnumbered Loopback0
destination 172.16.255.2

path-option 10 explicit name LOOSE-PATH

! router static
address-family ipv4 unicast
172.16.255.2/32 tunnel-te1

!```

List of ABRs as loose hops
Loose-hop path
Static route mapping IP traffic to tunnel-te1
Configuring Inter-AS Tunnels (Cisco IOS)

```
mls traffic-eng tunnels
!
interface Tunnel1
 ip unnumbered Loopback0
 no ip directed-broadcast
 tunnel destination 172.31.255.5
 tunnel mode mpls traffic-eng
 tunnel mpls traffic-eng priority 7 7
 tunnel mpls traffic-eng bandwidth 1000
 tunnel mpls traffic-eng path-option 10 explicit name LOOSE-PATH
!
ip route 172.31.255.5 255.255.255.255 Tunnel1
!
static ip route 172.31.255.5 255.255.255.255 Tunnel1

next-address loose 172.24.255.1
next-address loose 172.31.255.1
!
```

- **Loose-hop path**
- **Static route mapping**
- **IP traffic to Tunnel1**
- **List of ASBRs as loose hops**
Inter-Domain TE – Authentication and Policy Control

- Authentication and policy control desirable for Inter-AS deployments
- ASBR may perform RSVP authentication (MD5/SHA-1)
- ASBR may enforce a local policy for Inter-AS TE LSPs (e.g. limit bandwidth, message types, protection, etc.)
Configuring Inter-AS TE at ASBR (Cisco IOS)

```plaintext
mpls traffic-eng tunnels

key chain A-ASBR1-key
key 1
 key-string 7 151E0E18092F222A

interface Serial1/0
 ip address 192.168.0.1 255.255.255.252
 mpls traffic-eng tunnels

mpls traffic-eng passive-interface nbr-te-id 172.16.255.4 nbr-igp-id ospf 172.16.255.4
 ip rsvp bandwidth
 ip rsvp authentication key-chain A-ASBR1-key
 ip rsvp authentication type sha-1
 ip rsvp authentication

router bgp 65024
 no synchronization
 bgp log-neighbor-changes
 neighbor 172.24.255.3 remote-as 65024
 neighbor 172.24.255.3 update-source Loopback0
 neighbor 192.168.0.2 remote-as 65016
 no auto-summary

 ip rsvp policy local origin-as 65016
 no fast-reroute
 maximum bandwidth single 10000
 forward all
```

- **Authentication key**: Used for securing the signaling messages exchanged between the ASBRs.
- **Add ASBR link to TE topology database**: Ensures that the topology database includes the ASBR's link, allowing traffic engineering to be configured.
- **Enable RSVP authentication**: Activates the RSVP authentication feature, adding an extra layer of security to the signaling process.
- **Process signaling from AS 65016 if FRR not requested and 10M or less**: Configures the router to process signaling only if Fast Reroute (FRR) is not requested and the traffic is 10M or less, optimizing resource usage.
Distributed Path Computation with Backward Recursive PCE-based Computation (BRPC)

- Head-end sends request to a path computation element (PCE)
- PCE recursively computes virtual shortest path tree (SPT) to destination
- Head-end receives reply with virtual SPT if a path exists
- Head-end uses topology database and virtual SPT to compute end-to-end path
- Head-end can discover PCEs dynamically or have them configured statically
Enable LDP
Enable MPLS TE
Enable MPLS TE on interface
Enable MPLS forwarding for IP (LDP)

```conf
mpls label protocol ldp
mpls traffic-eng tunnels
!
interface TenGigabitEthernet0/1/0
ip address 172.16.0.0 255.255.255.254
mpls traffic-eng tunnels
mpls ip
ip rsvp bandwidth 155000
!
```
Configuring MPLS TE and LDP Simultaneously (Cisco IOS XR)

```
rsvp
 interface TenGigE0/0/0/0
 bandwidth 155000
 !
 !

mpls traffic-eng
 interface TenGigE0/0/0/0
 !
 !

mpls ldp
 interface TenGigE0/0/0/0
 !
 !
```
Configuring LDP Over a TE Tunnel (Cisco IOS)

Enable MPLS forwarding for IP (LDP) on Tunnel1

```
mpls label protocol ldp
mpls traffic-eng tunnels

interface Tunnel1
 ip unnumbered Loopback0

mpls ip
 tunnel destination 172.16.255.3
 tunnel mode mpls traffic-eng
 tunnel mpls traffic-eng autoroute announce
 tunnel mpls traffic-eng path-option 10 dynamic

Enable LDP
```
Enable LDP on tunnel-te1

```conf
interface tunnel-te1
 ipv4 unnumbered Loopback0
 priority 0 0
 signalled-bandwidth 80000
 autoroute announce
 destination 172.16.255.130
 path-option 10 dynamic
|
 rsvp
 interface TenGigE0/0/0/1
 bandwidth 155000
 |
 !
 mpls traffic-eng
 interface TenGigE0/0/0/1
 |
 |
 mpls ldp
 interface TenGigE0/0/0/0
 |
 |
 interface tunnel-te1
|
|
```
MPLS TE on Ethernet Bundle (Cisco IOS)

interface Port-channel1
  ip address 172.16.0.0 255.255.255.254
  mpls traffic-eng tunnels
  mpls traffic-eng attribute-flags 0xF
  mpls traffic-eng administrative-weight 20
  ip rsvp bandwidth percent 100

! interface GigabitEthernet2/0/0
  no ip address
  channel-protocol lACP
  channel-group 1 mode active

! interface GigabitEthernet2/0/1
  no ip address
  channel-protocol lACP
  channel-group 1 mode active

Enable MPLS TE on this interface
Attribute flags
TE metric
Maximum reservable bandwidth (100% of total bundle bandwidth)
LACP as channel protocol
Associate with Port-channel1 and enable LACP (non-passive)
LACP as channel protocol
Associate with Port-channel1 and enable LACP (non-passive)
MPLS TE on Ethernet Bundle (Cisco IOS XR)

```plaintext
interface Bundle-Ether1
 ipv4 address 172.16.0.1 255.255.255.254

interface GigabitEthernet0/1/0/0
 bundle id 1 mode active
 negotiation auto

interface GigabitEthernet0/1/0/1
 bundle id 1 mode active
 negotiation auto

router ospf 172
 area 0
 mpls traffic-eng

interface Bundle-Ether1
 network point-to-point

interface Loopback0
 passive enable

mpls traffic-eng router-id Loopback0

rsvp

interface Bundle-Ether1
 bandwidth 2000000

mpls traffic-eng

interface Bundle-Ether1
```

- Interface for bundle id 1
- Associate with bundle id 1 (Bundle-Ether1) and enable LACP (non-passive)
- Associate with bundle id 1 (Bundle-Ether1) and enable LACP (non-passive)
- Enable OSPF on bundle
- Maximum reservable bandwidth on bundle
- Enable MPLS TE on bundle
Per-VRF Tunnel Selection (Cisco IOS)

```conf
ip vrf RED
 rd 65172:2
 route-target export 65172:2
 route-target import 65172:2
 bgp next-hop Loopback1
!
interface Loopback0
 ip address 172.16.255.1 255.255.255.255
!
interface Loopback1
 ip address 172.16.255.101 255.255.255.255
!
interface Tunnel1
 description FROM-ROUTER-VRF-TO-DST1
 ip unnumbered Loopback0
 tunnel destination 172.16.255.2
 tunnel mode mpls traffic-eng
 tunnel mpls traffic-eng path-option 10 dynamic
!
ip route 172.16.255.102 255.255.255.255 Tunnel1
!```

- **Loopback1** advertised as next hop for VRF RED
- Remote next hop mapped to Tunnel1
Scaling Signaling (Refresh Reduction)

- RSVP soft state needs to be refreshed periodically
- Refresh reduction extensions use message Identifier associated with Path/Resv state
- Summary Refresh (SRefresh) message refreshes state using a message_id list
- SRefresh only replaces refresh Path/Resv messages
Configuring Refresh Reduction (Cisco IOS)

* Enabled by default in Cisco IOS XR

```
mpls traffic-eng tunnels
!
interface TenGigabitEthernet0/1/0
  ip address 172.16.0.0 255.255.255.254
mpls traffic-eng tunnels
ip rsvp bandwidth 100000
!
router ospf 100
  log-adjacency-changes
  passive-interface Loopback0
  network 172.16.0.0 0.0.255.255 area 0
mpls traffic-eng router-id Loopback0
mpls traffic-eng area 0
!
ip rsvp signalling refresh reduction
!
```