Cisco live!
July 10-14, 2016 • Las Vegas, NV

Your Time Is Now
OSPF Deployment in Modern Networks

Faraz Shamim
Technical Leader
BRKRST-2337
OSPF Deployment in Modern Networks - Agenda

- IPv6 related features in OSPF
- Core design, features and its application
 - Intra and Inter-area routing scalability
 - Summarization and redistribution best practices
- Data Center design, features and its application
 - Network Convergence & FRR
 - Full mesh design
- Distribution & Access design, features and its application
 - Hub and spoke model
 - EVPN feature and high availability
- WAN Aggregation design, features and its application
 - OSPF as a PE – CE protocol
 - Database Overload& Redistribution Protection feature
OSPF Deployment in Modern Networks

- Typical enterprise network is built upon multiple levels of switches deployed in three general layers: access (to include WAN Aggregation), distribution and core.

- Core:
 - Provides high speed connectivity between aggregation layers - gets traffic from one area of the network to another.

- Distribution:
 - Provides aggregation of traffic flows from multiple Access layers to the Core. Traffic filtering and packet policies are typically implemented here. The distribution layer should be the blocking point for Queries (more about this later).

- Access / WAN Aggregation:
 - Provide connectivity to user attachment points for servers, end stations, storage devices, and other IP devices.
 - Provides connectivity to the internet and/or remote sites/offices.
OSPFv3 Address Family Support for IPv4/IPv6

Enables IPv4 and IPv6 address families to be supported on a single network infrastructure.

- OSPFv3 & OSPFv2 can be run concurrently
 - Cisco supports both
 - Each address family has a separate SPF (Ships in the Night)
- Design and deployment techniques are same as with OSPFv2
 - Not compatible with OSPFv2
 - Training is required to understand the similarities and differences
 - Troubleshooting could be a challenge (initially)
 - LSA format changes and introduction of two new LSA’s

```
ipv6 unicast-routing
!
interface TenGig0/0/0/1
  ip address 192.168.1.1 255.255.255.0
ipv6 enable
  ospfv3 1 area 0 ipv6
  ospfv3 1 area 1 ipv4
!
router ospfv3 1
  address-family ipv4 unicast
    router-id 10.1.1.1
    exit-address-family
  !
  address-family ipv6 unicast
    router-id 10.1.1.1
    exit-address-family
```
OSPFv3 Address Family Support

- Multi-topology (multi-address family) RFC-5838
 - Can be applied in green fields
 - Most common approach will be multi instance RFC-5340
 - Reduced complexity

- OSPFv3 support for IPv6
 - Link local routing brings a concept of scalable routing
 - Uses IPv6 transport and uses link-local addresses as source address.

- Design deployment techniques are still the same as with OSPFv2
 - Training is required to understand the similarities and differences
 - Troubleshooting could be a challenge (initially)
 - LSA format changes, and introduction of two new LSA’s
OSPFv3 vs. OSPFv2

Similar Concepts

- Runs directly over IPv6 (port 89)
- Uses the same basic packet types
- Neighbor discovery and adjacency formation mechanisms are identical (All OSPF Routers FF02::5, All OSPF DRs FF02::6)
- LSA flooding and aging mechanisms are identical
- Same interface types (P2P, P2MP, Broadcast, NBMA, Virtual)
- Independent process from OSPFv2

Differences

- Removal of Addressing Semantics - Because IP addressing is now separated from the calculation of the SPF tree
- Per Link Processing
- Addition of flooding scope
- Two new LSAs
- Handling of unknown LSA types
- Virtual Link Changes
- Authentication changes
OSPFv3 — Address-Family Support

• The OSPFv3 Address Families feature enables IPv4 nodes on separate subnets to peer using IPv6 link-local addresses.

• OSPFv3 improves upon OSPFv2 scalability for IPv4 by leveraging the Intra-Area-Prefix LSA to advertise connected prefixes.

• Because IP addressing is now separated from the calculation of the SPF tree, OSPFv3 interior routers do not have to flood the entire area when a topology change occurs.

• This is especially advantageous for large IPv4-based single-area topologies with lots of access devices.
OSPFv3 — VRF Enhancements

• OSPFv3 as a PE-CE routing protocol in MPLS VPN
• OSPFv3 VRF-lite support (OSPFv3 in VRFs without MPLS backbone)
• OSPFv3 sham-links are intra-area links configured between the PE routers
• All features supported for IPv6 and IPv4 address-families
OSPFv3 — Not So Stubby Areas (NSSA)

Updated OSPFv3 to latest IETF Standard RFC-3101

- Previous implementation was according to the RFC 1587

- Enhancements to the import of OSPF's summary routes.
 - Import of OSPF's summary routes into an NSSA as Type-3 summary-LSAs is now optional.

- Changes to Type-7 LSA;
 - Changes to translating Type-7 LSAs into Type-5 LSAs
 - Changes to flushing translated Type-7 LSAs
 - Changes to the Type-7 AS external routing calculation.

- P-bit (propagate bit)
 - The P-bit default has been defined as clear
OSPFv3 — SNMP MIB Support

- Polled objects and traps/notifications
- Standards-based SNMP management of OSPFv3 protocol

Additional CCO information
http://www.cisco.com/go/mibs
OSPFv3 — Generalized TTL Security Mechanism

• Protects OSPFv3 virtual interfaces (virtual links and sham links) from attacks by remote hackers

• Allows user to configure maximum hop count which OSPFv3 protocol packets may travel over these virtual interfaces

• OSPFv3 protocol packets which traveled more hops than allowed are dropped early in processing
OSPFv3 — Hiding Transit-Only Networks

Selectively turn on/off infrastructure prefix advertisements

- Support for IETF Standard RFC 6860
- Infrastructure link may have IPv4 and IPv6 addresses which, by default, are advertised by OSPFv3 using intra-area-prefix-LSA.
- Resource saving, and convergence improvements
- Remote attack vulnerability reduction

```
router ospfv3 1
  prefix-suppression
  address-family ipv4 unicast
    prefix-suppression
  address-family ipv6 unicast
    prefix-suppression
end
```
OSPFv3 — Graceful Shutdown

- Configuration command to place OSPFv3 Address-Family in a ‘down’ state
 - Takes OSPFv3 router out of the service
 - Most of events ignored during shutdown
 - Only configuration events are processed
 - “no shutdown” restores normal operation

- Uses LSA flushing to notify other routers to route around, empty hello sent to speed up neighbor DOWN event on the peers.

R(config)#router ospfv3 1
R(config-router)#shutdown
OSPFv3 — Graceful Shutdown

- **OSPFv3 Max-metric Router LSA**
 - Diverts traffic around the router if alternate paths are available in the network

- **OSPFv3 External Path Preference Option** *(RFC 5340)*
 - Prevents routing loop when calculating best path for external routes
 - Intra-area paths using non-backbone areas are always the most preferred
 - The other paths, intra-area backbone paths and inter-area paths, are of equal preference.

Set max-metric (do not use this router)
OSPFv3 Area filter

- 15.3(1)S/XE3.8

- Area filter controls which intra and inter area routes are propagated by ABR into an area using inter area LSAs.

- Resource saving on intra area routers without need to configure whole area stub or NSSA.

```bash
router ospfv3 1
  address-family ipv4 unicast area 2
    filter-list prefix test_ipv4 in
  exit-address-family!
  address-family ipv6 unicast area 2
    filter-list prefix test_ipv6 in
  exit-address-family!
  ip prefix-list test_ipv4 seq 5 permit 2.2.2.2/32
  ipv6 prefix-list test_ipv6 seq 5 deny 2011::1/128
```
• **Areas: the tool to make OSPF Scale!**
 - OSPF uses a 2 level hierarchical model
 - One SPF per area, flooding done per area
 - Regular, Stub, Totally Stubby and NSSA Area Types

• A router has a separate LS database for each area to which it belongs
• All routers belonging to the same area should have identical databases
• SPF calculation is performed independently for each area
• LSA flooding is bounded by area
Link State—Location of Different LSAs

Network changes generates link-state advertisements (LSA)

- Router LSA (Type 1)
- Network LSA (Type 2)
- Summary LSA (type 3 and type 4)
- External LSA (type 5)

- All routers exchange LSAs to build and maintain a consistent database
- The protocol remains relatively quiet during steady-state conditions
 - Periodic refresh of LSAs every 30 minutes
 - Otherwise, updates only sent when there are changes
- LSA flooded throughout the area in response to any topology change
- SPF runs in every router on the receipt of any LSA indicating a topology change
- OSPF by design has a number of throttling mechanisms to prevent the network from thrashing during periods of instability

- Full SPF
 - Triggered by the change in Router or Network LSA
 - All LSA types are processed

- Partial SPF
 - Triggered by the change in Type-3/4/5/7 LSA
 - Part of the LSAs are processed (see slide notes)
Area Size: How Many Routers in an Area?

- Number of adjacent neighbors is more a factor!
- More important from the standpoint of the amount of information flooded in area
- Keep router LSAs under MTU size
 - Implies lots of interfaces (and possibly lots of neighbors)
 - Exceeding results in IP fragmentation which should be avoided
Area Size: How Many ABRs per Area?

• More ABRs will create more Type 3 LSA replication within the backbone and in other areas
• In a large scale routing this can cause scalability issues
• 5 prefixes in area 0 and 5 in area 1 could generate 30 summary LSAs all together with just 3 ABRs.
• Increase in areas or ABRs could worsen the situation
Area Size: How Many Areas per ABR?

• More areas per ABR will put a significant burden on the ABR
• More Type 3 LSA will be generated by the ABR
• 5 prefixes in area 0 and 5 in each areas could generate 60 summary LSAs all together.
• Increase in areas or ABRs could worsen the situation
Intra-Area Routing Scalability

• Physical link flaps can cause instability in OSPF
• Avoid having Physical links in OSPF through prefix-suppression feature
• BGP can be introduce to carry Physical links for monitor purpose
• Do redistributed connected in BGP to carry the physical links
• This will make intra area routing very scalable
Inter-Area Routing Scalability

- Physical links outside the area should be filtered via Type 3 LSA filtering feature.
- Every area should carry only loopback addresses for all routers.
- Only NMS station will keep track of those physical links.
- These links can be advertised in BGP via redistribute connected.
- This will bring scalability in the backbone.
Summarization Technique

- Configure on Both ABRs
 - Area-Range 11.1.0/17
 - Area-Range 11.1.128/17

- Cost to Range 1:
 - Via ABR1: 30
 - Via ABR2: 80

- Cost to Range 2:
 - Via ABR1: 80
 - Via ABR2: 30
Redistribution Best Practices

• Can have multiple ‘islands’ of IGPs
• Islands tied together by a BGP core
• One island’s instability will not impact other Islands
• May be a requirement for redistribution
• This design increases network stability & scalability BUT slows down the network convergence
Redistribution Best Practices

• Should be careful with the router that is receiving full internet routes

• Redistribution of BGP into OSPF can melt the network down

• Areas should be defined as stub when possible to prevent accidental redistribution of eBGP into OSPF

• iBGP routes can not be redistributed into IGP by default
Dealing with Redistribution

• The number of redistribution boundaries should be kept to a minimum
 • You have better things to do in life besides building the access lists!

• When redistributing try to place the DR as close to the ASBR as possible to minimize flooding

• If possible make an area NSSA
 • To reduce type 4 in the network specially when there are too many ASBRs in an area

• NSSA will also give the flexibility to filter type 5 at the ABR level

• Redistribute only what is absolutely necessary
 • Don’t redistribute full Internet routes into OSPF!
 • Default route into BGP core; let the core worry about final destination
Dealing with Redistribution

• Be aware of metric requirements going from one protocol to another
 • RIP metric is a value from 1–16
 • OSPF Metric is from 1–65535
 • EIGRP Metric is 1-4,294,967,296

• Include a redistribution default metric command as a protection

```
router ospf 1
  network 130.93.0.0 0.0.255.255 area 0.0.0.0
  redistribute rip metric 1 subnets
```
Data Center

• Data Centers are at the core of your business activity

• The Core can (and may) be used as the data center core.

• Video, voice or other rich media traffic is placing ever-increasing demands on the physical layer

• Consider the following items when determining the right core solution:
 • 10GigE density—Will there be enough 10GigE ports on the core switch pair to support both the campus distribution as well as the data center aggregation modules?
 • Administrative domains and policies—Separate cores help to isolate campus distribution layers from data center aggregation layers in terms of troubleshooting, administration, and policies (QoS, ACLs, troubleshooting, and maintenance).
 • Future anticipation—The impact that can result from implementing a separate data center core layer at a later date might make it worthwhile to install it at the beginning.

• A robust infrastructure is needed to handle these demands
Fast(er) Network Convergence

• Network convergence is the time needed for traffic to be rerouted to the alternative or more optimal path after the network event.

• Network convergence requires all affected routers to process the event and update the appropriate data structures used for forwarding.

• Network convergence is the time required to:
 • Detect the event
 • Propagate the event
 • Process the event
 • Update the routing table/FIB
Network Convergence

Techniques/Tools for Fast Convergence

- Carrier Delays
- Hello/dead timers
- Bi-Directional Forwarding Detection (BFD)
- LSA packet pacing
- Interface event dampening
- Exponential throttle timers for LSA and SPF
- MinLSArrival Interval
- Incremental SPF

Techniques/Tools for Resiliency

- Stub router (e.g., max-metric)
- Graceful Restart/NSF
Improving Convergence — Detection

OSPF Aggressive Timers (Fast Hellos)

- OSPF supports aggressive timers to decrease link failure detection
 - Timers can be tuned to a minimum of 1 second dead interval
 - Number of Hello packets per seconds specified as multiplier – 3 to 20
 - Interface dampening is recommended with sub-second hello timers
 - OSPF point-to-point network type to avoid designated router (DR) negotiation.

```
interface GigabitEthernet1/1
dampening
ip ospf dead-interval minimal hello-multiplier 5
ip ospf network point-to-point
```

- Additional information
 - There are reasons for not recommending this and also for us not offering such low values; for example, depending on the number of interfaces, hello rates can become CPU intensive and lead to spikes in processing/memory requirements
Improving Convergence — Detection

Bidirectional Forwarding Detection (BFD)

- Cisco IOS Bidirectional Forwarding Detection (BFD) is a fast Hello at Layer 2.5
 - BFD exhibits lower overhead than aggressive hellos
 - BFD is a heartbeat at Layer 2.5, provides sub-second failure detection
 - BFD can provide reaction time close to 50 milliseconds

- OSPF use BFD facilities which send extremely fast keep-alives between routers
 - BFD and OSPF works together, with OSPF as the upper layer protocol
 - BFD relies on the OSPF to tell it about neighbors
 - Notifications occur quickly when changes occur in Layer 2 state

Additional CCO information
OSPF Loop Free Alternative Fast ReRoute (FRR)

Support for IP Fast Reroute (IP-FRR)

- IP-FRR is a mechanism that reduces traffic disruption to 10s of milliseconds in event of link or node failure
 - Per-prefix LFA FRR enabled via route-maps
 - Per-prefix LFA FRR enabled for all areas unless explicitly specified
 - LFA FRR automatically enabled on OSPF interfaces
 - No audit trail of potential LFAs is stored
 - Repair paths are computed for all prefixes though not all prefixes may have repair paths

- But….
 - It runs at the process level
 - Does not guarantee time limit
 - Performance depends on tuning and platform implementation
LFA Repair Path Selection

<table>
<thead>
<tr>
<th>Tie-Breaker Option</th>
<th>Description</th>
<th>Flag</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Srlg</td>
<td>Prefer repair path not sharing same shared risk link group</td>
<td>SRLG</td>
<td>10</td>
</tr>
<tr>
<td>Primary-path</td>
<td>Prefer repair path that is primary path of prefix with multiple equal-cost primary paths (different from primary path being protected)</td>
<td>PrimPath</td>
<td>20</td>
</tr>
<tr>
<td>Interface-disjoint</td>
<td>Prefer repair path that uses different next hop interface from protected primary path</td>
<td>IntfDj</td>
<td>30</td>
</tr>
<tr>
<td>Lowest metric</td>
<td>Prefer repair path with lowest metric</td>
<td>CostWon</td>
<td>40</td>
</tr>
<tr>
<td>Linecard-disjoint</td>
<td>Prefer primary and repair path use different linecard</td>
<td>LC Dj</td>
<td>50</td>
</tr>
<tr>
<td>Node-protecting</td>
<td>Prefer node protecting over link protecting</td>
<td>NodeProt</td>
<td>60</td>
</tr>
<tr>
<td>Broadcast-interface-disjoint</td>
<td>Primary and repair path do not share common broadcast interface</td>
<td>BcastDj</td>
<td>70</td>
</tr>
<tr>
<td>Load-sharing</td>
<td>Use Cisco hashing algorithm</td>
<td>Loadshare</td>
<td>256</td>
</tr>
</tbody>
</table>
Enabling OSPF LFA FRR

- IOS implements per-prefix LFA FRR
- Per-prefix LFA FRR enabled for all areas unless explicitly specified
- LFA FRR automatically enabled on OSPF interfaces
- No audit trail of potential LFAs is stored
- Repair paths are computed for all prefixes though not all prefixes may have repair paths

```
router ospf 1
  router-id 10.1.1.1
  fast-reroute per-prefix enable prefix-priority low
  network 10.0.0.0 255.255.255.255 area 0
  ...
```
Configuration router mode

• Basic Router Mode

```snippet
router ospf 1
fast-reroute per-prefix enable prefix-priority low
```

• Advanced Router Mode

```snippet
r401(config)#router ospf 1
r401(config-router)#fast-reroute ?
  keep-all-paths Keep LFA FRR audit trail
  per-prefix Per-prefix LFA FRR parameters

r401(config-router)#fast-reroute per-prefix enable ?
  enable Enable LFA Fast Reroute
  tie-break LFA FRR repair path selection policy tiebreaks

r401(config-router)#fast-reroute per-prefix enable ?
  area Area to enable LFA FRR in
  prefix-priority Priority of prefixes to be protected
```

• Interface Mode

```snippet
r401(config-if)#ip ospf fast-reroute per-prefix ?
  candidate If interface can be protecting
  protection If interface can be protected
```
OPSF IPFRR Remote LFA

• Next phase of IP Fast Reroute (IP FRR) feature originally released in XE 3.3
• One of problems intrinsic to directly connected LFA is less-than-full coverage, i.e. in some topologies not all prefixes are protected. Remote LFA addresses this limitation

Looping if directly connected LFA was used

Remote LFA tunnel solving this
OPSF IPFRR Remote LFA

Remote LFA Configuration

rtr-A#show run | include target
mpls ldp discovery targeted-hello accept

rtr-A#show run | show router ospf
router ospf 1
 router-id 1.0.0.1
 fast-reroute per-prefix enable prefix-priority low
 fast-reroute per-prefix remote-lfa tunnel mpls-ldp
 network 1.0.0.0 0.255.255.255 area 0
OPSF IPFRR Remote LFA

Restrictions for OSPF IPv4 Remote LFA

- The feature is supported only in global VPN routing and forwarding (VRF) OSPF instances.
- The only supported tunneling method is MPLS.
- You cannot configure a traffic engineering (TE) tunnel interface as a protected interface.
- Not all routes may have repair paths (depends on network topology)
- Devices selected as tunnel termination points must have a /32 address advertised in the area in which remote LFA is enabled.
- Devices selected as tunnel termination points must be configured to accept targeted LDP sessions using “mpls ldp discovery targeted-hello accept”
OPSF IPFRR Remote LFA

Are tunnels created?

r801#sh ip ospf fast-reroute remote-lfa tunnels

...

Interface MPLS-Remote-Lfa1
Tunnel type: MPLS-LDP
Tailend router ID: 1.0.0.3
Termination IP address: 1.0.0.3
Outgoing interface: Serial2/0
First hop gateway: 1.0.0.2
Tunnel metric: 20
Protects:
 1.0.0.5 Serial3/0, total metric 40

Interface MPLS-Remote-Lfa2
Tunnel type: MPLS-LDP
Tailend router ID: 1.0.0.4
Termination IP address: 1.0.0.4
Outgoing interface: Serial3/0
First hop gateway: 1.0.0.5
Tunnel metric: 20
Protects:
 1.0.0.2 Serial2/0, total metric 40
OSPF Full Mesh

- 2 routers == 1 link
- 3 routers == 3 links
- 4 routers == 6 links
- 5 routers == 10 links
- 6 routers == 15 links
- N routers == \((N) (N-1)) / 2\n- ...

Full Mesh Topologies Are Complex
OSPF Full Mesh

- Flooding routing information through a full mesh topology is the MAIN concern
 - Each router will receive at least one copy of new information from each neighbor on the full mesh
 - Link down is n2
 - Node down is n3
 - Very large router LSA, node down could become n4

- There are several techniques you can use to reduce the amount of flooding in a full mesh
 - Mesh groups reduce the flooding in a full mesh network
 - Mesh groups are manually configured “designated routers”
OSPF Full Mesh

- Pick a subset (>=2) of routers to flood into the mesh and block flooding on the remainder; leave flooding to these routers open.
- This will reduce the number of times information is flooded over a full mesh topology.

```plaintext
! Point-to-Point
interface serial 1/0
ip ospf database-filter all out
....

! Point-to-Multipoint
router ospf 1
neighbor 10.1.1.3 database-filter all out
```
Scalability with flood reduction RFC 4136

• Eliminates periodic refresh of unchanged LSAs
• Configured at interface level

! All interfaces types
interface ethernet 0/0
 ip ospf flood-reduction

• Very useful in fully meshed topologies
• Possible extension to force refresh at an increased interval, e.g. every four hours; currently not implemented
 • Changes could be missed if the sum of the changes results in an identical checksum
 • Periodic refresh provides recovery from bugs and glitches
OSPF Border Connections

- Dual homed connections in hub and spoke networks illustrate a design challenge in OSPF: connections parallel to an area border.
- Assume the D to E link is in area 0.
- If the D to F link fails, traffic from A to F will:
 - Route towards the summary advertised by D.
 - Route via the more specific along the path G, E, F.
OSPF Border Connections

• Let’s take a closer look at the problem

• Traffic prefers to stay within the area no matter what the actual link costs are
 • To reach A, we will take the higher cost link if the border link is in the backbone
 • To reach B, we will take the higher cost link if the border link is in the area
 • This is because we will always use an intra-area path over an inter-area path
OSPF Border Connections

• Then, either:
 • Decide which traffic you want to route optimally
 • Use either virtual circuits (sub-interfaces) or real links to create one adjacency between the ABRs per routed area

• Configure the link in Area 1 with a virtual link in backbone (won’t work for more than one area)
OSPF Border Connections

• Some tuning required for OSPF to work well in hub and spoke scenarios

• Enhancements are being made in IETF to make OSPF more robust on hub and spoke

• Other protocols like EIGRP, ODR, RIPv2 and BGP work better under hub and spoke model compare to OSPF

• Enterprise BGP is not complicated

• You do not need to play with a lot of attributes
Hub and Spoke

- Summarization of areas will require specific routing information between the ABRs
- This is to avoid suboptimal routing
- The link between two hub routers should be equal to the number of areas
- As you grow the number of areas, you will grow the number of VLAN/PVCs — scalability issue
- Possible solution is to have a single link with adjacencies in multiple areas. (RFC 5185)
Multi Area Adjacency

Suboptimal path at Area Boundary

• If Link 1 is in area 0, router C will choose an path through E, F, and D to 10.1.2.0/24 rather than Link1

• This is because OSPF always prefers intra-area routes over inter-area routes

• If Link 1 is put in area 1, router D will choose an path through B, A, and C to 10.1.3.0/24 with the same reason

Allows an interface to be in both areas:

rtr-C(config)# interface Ethernet 0/0
rtr-C(config-if)# ip address 10.0.12.1 255.255.255.0
rtr-C(config-if)# ip ospf 1 area 0
rtr-C(config-if)# ip ospf network point-to-point
rtr-C(config-if)# ip ospf multi-area 2
OSPF Hub and Spoke

- Every router within a flooding domain receives the same information
 - Although B can only reach C through A, it still receives all of C’s routing information
- Because of this, OSPF requires additional tuning for hub and spoke deployments
OSPF Hub and Spoke

- One of our primary goals is to control the amount of flooding towards the remotes.
- You can reduce flooding by configuring the hub not to flood any information to the remotes at all:
 - `ip ospf database-filter all out`
 - The remote routers must supply their own remote, or the hub router must originate a default locally.
- This isn’t a common configuration.
OSPF Hub and Spoke

- The spoke areas should always be the “most stubby” you can get away with
 - If possible, make them totally stubby
 - If there is redistribution at the spokes, make the area totally not-so-stubby
- The fewer spokes in each area the less flooding redundancy
 - However, less can be summarized in the backbone
 - Separate sub-interface is needed per area
- Totally stubby makes more sense in multiple area situation

```conf
router ospf 100
  area 1 stub no-summary
  ...

router ospf 100
  redistribute rip metric 10
  ...
```
OSPF Hub and Spoke: Network Types

- OSPF could treat a multi-point link as a broadcast network or NBMA, but there are issues with flooding and forwarding
 - B and D don’t receive C’s packets, so they think A has the highest IP address, and elect A as DR
 - C elects itself as DR
 - Flooding will fail miserably in this situation
- We can set the OSPF DR priorities so the hub router is always elected DR
 - Set the spokes to 0 so they don’t participate in DR election

```
interface s0/0
  ip address 10.1.1. 255.255.255.0
  ip ospf priority 200
  ....
```

```
interface s0
  ip ospf priority 0
  ....
```

```
“A Is DR”
“C Is DR”
“A Is DR”
```

```
“C Is DR”
“A Is DR”
```

```
“C Is DR”
“A Is DR”
```

```
“A Is DR”
```

```
BRKRST-2337 © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Public 60
```

![Network Diagram](image-url)
OSPF Hub and Spoke: NBMA/Broadcast

- OSPF will still have forwarding issues since the OSPF broadcast and NBMA assume a full mesh
- There is bi-directional connectivity between A and B, C, and D
- B, C, and D cannot communicate amongst themselves and traffic will be black-holed
- One can get around this using DLCI routing at the Frame Relay layer
OSPF Hub and Spoke: P2MP

- You can also configure the serial interface at the hub router as a point-to-multi-point type
 - All the remotes are in a single IP subnet
 - OSPF treats each remote as a separate point-to-point link for flooding
- OSPF will advertise a host route to the IP address of each spoke router to provide connectivity
- Smaller DB Size compare to P2P
- Most natural OSPF solution

```
interface s0/0
  ip address 10.1.1.1 255.255.255.0
  ip ospf network point-to-multipoint

interface s0
  ip address 10.1.1.x 255.255.255.0
  ip ospf network point-to-multipoint
```
OSPF Hub and Spoke:

P2P Sub-Interfaces

- OSPF can also use point-to-point sub-interfaces, treating each one as a separate point-to-point link.
- Increase the DB size.
- These use more address space and require more administration on the router.
 - Use /31 addresses for these point to point links.

interface s0/0.1 point-to-point
ip address 10.1.1.0 255.255.255.254
....
interface s0/0.2 point-to-point
ip address 10.1.1.2 255.255.255.254
....
interface s0/0.3 point-to-point
ip address 10.1.1.4 255.255.255.254
OSPF Hub and Spoke

<table>
<thead>
<tr>
<th>Network Type</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Interface at the Hub Treated as an OSPF Broadcast or NBMA Network</td>
<td>Single IP Subnet Fewer Host Routes in Routing Table</td>
<td>Manual Configuration of Each Spoke with the Correct OSPF Priority No Reachability Between Spokes or Labor-Intensive Layer 2 Configuration</td>
</tr>
<tr>
<td>Single Interface at the Hub Treated as an OSPF Point-to-Multipoint Network</td>
<td>Single IP Subnet No Configuration per Spoke Most Natural Solution Smaller database</td>
<td>Additional Host Routes Inserted in the Routing Table</td>
</tr>
<tr>
<td>Individual Point-to-Point Interface at the Hub for Each Spoke</td>
<td>Can Take Advantage of End-to-End Signaling for Down State</td>
<td>Lost IP Address Space More Routes in the Routing Table Larger database Overhead of Sub-Interfaces</td>
</tr>
</tbody>
</table>
OSPF Hub and Spoke

- The other consideration is determining how many spokes should fall within the area.
- If the number of remotes are low, we can place the hub and its spokes within an area.
- However, as the count rises, we want to make the hub an ABR, and split off the spokes in a single area.
- If you’re going to summarize into and out of the remotes, the hub needs to be a border router.
OSPF Hub and Spoke

- Low speed links and large numbers of spoke may require multiple flooding domains
- Balance the number of flooding domains on the hub against the number of spokes in each flooding domain
- The link speeds and the amount of information being passed through the network determines the right balance
OSPF Hub and Spoke

OSPF Demand-Circuit Ignore

Selectively ignore Demand Circuit (DC) configurations from Spoke

• A misconfiguration of DC on one spoke triggers Hub may cause (in case of p2mp interface on the Hub) negotiation of demand circuits for other spokes (Spoke 1 and 2).

• It’s hard to reverse to non-DC operation even if DC removed from all Spokes

• Keyword introduced to prohibit DC negotiation, and debug for trouble-shooting:

  ```
  ip ospf demand-circuit ignore
  debug ip ospf demand-circuit
  ```

• Keyword typically used on hub.
Easy Virtual Network (EVN)*

L3 virtualized network

- EVN interoperates with VRF-Lite deployments
 - EVN is backward compatible with VRF-Lite
 - Can deployed in the same network for a smooth transition to EVN
 - Set EVN “vnet tag” value matches the 802.1Q VLAN ID on the VRF-Lite device.

- EVN is interoperability with existing WAN solutions
 - EVN in the campus is completely compatible with the WAN solutions MPLS-VPN, MPLS-VPN over mGRE, and DMVPN

- EVN scales
 - Today 32 virtual networks are supported per platform. This may be increased in the future.

* no ipv6 support yet
EVN Configuration: Use of VNET trunk

- Limiting VNET trunk to set of VRFs?
- Use command “vnet trunk list”.

- Configure route-replication

```plaintext
vrf list ONLY_RED_AND_BLUE
  member blue
  member red
!
interface Ethernet0/0
  vnet trunk list ONLY_RED_AND_BLUE
  ip address 1.1.1.2 255.255.255.0
!
vrf definition blue
  vnet tag 10
!
  address-family ipv4
    route-replicate from vrf red unicast all
    exit-address-family
!
```
Easy Virtual Network (EVN)

EVN Configuration: Assign VNETS under OSPF

- New VNET prompts available with very rich set of the interface commands.

```bash
vrf definition red
  vnet tag 100
  !
  address-family ipv4
  exit-address-family

vrf definition blue
  vnet tag 101
  !
  address-family ipv4
  exit-address-family

vrf definition green
  vnet tag 102
  !
  address-family ipv4
  exit-address-family

interface Ethernet0/0
  vnet trunk
  ip address 1.1.1.1 255.255.255.0
  !
  vnet name red
  ip ospf cost 100
  !
  vnet global
  ip ospf cost 50
  !

router ospf 1
  network 10.0.0.0 0.255.255.255 area 0
  !
router ospf 2 vrf red
  !
router ospf 3 vrf blue
```
EVN: Configuration Comparisons

VRF Configuration

vrf definition red
!
address-family ipv4
exit-address-family

vrf definition blue
!
address-family ipv4
exit-address-family

interface Ethernet0/0

interface Ethernet0/0.100
encapsulation dot1Q 100
vrf forwarding red
ip address 1.1.1.1 255.255.255.0
ip ospf network point-to-point

interface Ethernet0/0.101
encapsulation dot1Q 101
vrf forwarding blue
ip address 1.1.1.1 255.255.255.0
ip ospf network point-to-point

VNET Configuration

vrf definition red
vnet tag 100
!
address-family ipv4
exit-address-family

vrf definition blue
vnet tag 101
!
address-family ipv4
exit-address-family

interface Ethernet0/0
vnet trunk
ip address 1.1.1.1 255.255.255.0
ip ospf network point-to-point
Highly Available Route Processors

Stateful Switchover (SOO)/Nonstop Forwarding (NSF)

- NSF/SSO are redundancy mechanisms for intra-chassis route processor failover
- NSF gracefully restarts* routing protocol neighbor relationships after an SSO fail-over
 - Newly active redundant route processor continues forwarding traffic using synchronized HW forwarding tables
 - NSF capable routing protocol (e.g.: OSPF) requests graceful neighbor restart
 - Routing neighbors reform with no traffic loss
 - NSF and fast hellos/BFD do not go well and should be avoided
 - Cisco and RFC3623 standard

The fundamental premise of GR/NSF is to route through temporary failures, rather than around them!
Highly Available Route Processors

Non-Stop Routing (NSR)

Stateful redundancy mechanism for intra-chassis route processor (RP) failover

- **NSR**, unlike **NSF** with SSO,
 - Allows routing process on active RP to synchronize all necessary data and states with routing protocol process on standby RP
 - When switchover occurs, newly active RP has all necessary data and states to continue running without requiring any help from its neighbor(s)
 - NSR does NOT require additional communication with protocol peers

- **Pro**
 - NSR is desirable in cases where routing protocol peer doesn’t support Cisco or IETF standards to support Graceful Restart

- **Con**
 - Uses more system resources due to information transfer to standby processor
Highly Available Route Processors
Non-Stop Routing (NSR) Traffic Engineering (TE) Support

- OSPF NSR has been shipping since IOS-XE 3.7
 - Hot standby of OSPF instance on the Standby Route Processor
 - Does not require protocol extensions on neighboring routers

- IOS-XE 3.10 adds support for Traffic Engineering
 - Constrained Shortest Path First (CSPF), Explicit Route Objects (ERO) processing, auto-tunnel creation and other TE functionalities are synced between Active and Standby
 - Active will resume without interruption to FRR, path protection, make before break and preemption
OSPF as PE-CE Routing Protocol

Different OSPF Process ID

- Site 2 expects Type-3 Summary (inter-area) routes but receives External Type-5
 - OSPF process-ID is usually locally significant, however
 - In MPLS VPNs the cloud ‘acts’ as if it’s a single OSPF router
 - The OSPF process id must match or external Type-5 routes are generated

- Solution; configure same domain-id on both PEs to solve the problem

```bash
router ospf 2 vrf <name>
domain-id 99

router ospf 1 vrf <name>
domain-id 99
```
OSPF as PE-CE Routing Protocol Summarization

Ingress PE

• What if you want Site1 (area 1) to send a summary route to all other
• Summarization not possible since ABR does not exist in Site1
• PE-1 can summarize via BGP and advertise a aggregate block to all other sites
OSPF as PE-CE Routing Protocol Summarization

Egress PE

- What if you need to send a summary route to Site3 (area3)?
- Can’t summarize from each individual site; no ABR exists within the sites (area1 or area2)
- Summarize all the other site routes on PE-3; Type-5 metric will be selected from best to BGP MED (multi-exit discriminator)

```
router ospf 1 vrf <name>
  summary-address 30.0.0.0 255.0.0.0
```
OSPF as PE-CE Routing Protocol Summarization

Egress PE—Loop Prevention

- Summary is originated in OSPF
- Summary route will be propagated to all sites as a result of redistribution from OSPF into BGP
- Summary route should be filtered while redistributing OSPF into BGP on PE3 unless it is desirable to send summary to some select PEs

Router BGP:
```bash
router bgp xx
    address-family ipv4 vrf vpna
    redistribute ospf 99 vrf vpna route-map block_summary
    route-map permit 10 block_summary
      match ip address 99
      access-list 99 deny 30.0.0.0 0.0.0.255
      access-list 99 permit any
```

Route OSPF:
```bash
router ospf 1 vrf <name>
    summary-address 30.0.0.0 255.0.0.0
```

VPN-IPv4 Update:
- RD: 30.0.0.0
- RT: xxx:xxx
- MED: 58
- OSPF-Route-Type: 0:5:0
- OSPF-Domain: xxx

Area 1:
- 30.1.1.0 - 30.1.255.0
 - Site1

Area 2:
- 30.0.0.0/8 summary route
 - 30.0.0.0 - 30.2.255.0
 - Site2

Area 3:
- 30.2.1.0 - 30.2.255.0
 - Site3

OSPF as PE
- Type-5 (External-LSA)
 - Link-State-ID: 30.0.0.0
 - Adv. Router: PE-3
 - Metric: 58
PE-CE Common Design Consideration

OSPF Area Placement - Sites have Area 0

- Type 1 or Type2 LSA converted into summary LSA by the Customer ABR
- Local PE receives Type-3 LSA
- Remote PE forwards LSA to remote CE
- CE nodes accept an LSA with ‘down bit’ set
- PE nodes reject an LSA with ‘down bit’ set

VPN-IPv4 Update
RD:Net-1, Next-hop=PE-1
RT=x.x.x.x, MED: 6
OSPF-Route-Type= 0:3:0
OSPF-Domain:xxx

Type-3 (Summary-LSA)
Down Bit is Set
Link-State-ID: Net-1
Adv. Router: PE-2
Metric: 6

OR

Type-2 Network-LSA
Link-State-ID: Net-1
Adv. Router: x.x.x.x
PE-CE Common Design Consideration

OSPF Sites Belong to Different Areas

- Area 0 is not mandatory when migrating to MPLS VPN service
- VPN sites may have different Sites configured for different areas
- If Area 0 exists, it must touch MPLS VPN PE routers
PE-CE Common Design Consideration

All Sites Belong to the Same Area—Backdoor Does Not Exist

- All sites belong to same OSPF area (area 1 in the example)
- PEs acts as OSPF ABR routers (Type 1 or 2 LSA are always converted into Type 3)
- Remote Site receives a summary LSA
- Not an issue if the topology for simple topologies

Type-3 LSA created even though local area number is same

VPN-IPv4 Update
- RD:Net-1, Next-hop=PE-1
- RT=xxx:xxx, MED: 6
- OSPF-Route-Type= 1:2:0
- OSPF-Domain:xxx
- OSPF-RID= PE-1:0

Type-1 (Router-LSA)
- Link-State-ID: Net-1
- Adv. Router: CE-1
- Metric: 6

Type-3 (Summary-LSA)
- Down bit is set
- Link-State-ID: Net-1
- Metric: 6
PE-CE Common Design Consideration

All Sites Belong to the Same Area—Backdoor Exists

- Route is advertised to MPLS VPN backbone
- Same prefix is learnt as intra-area route via backdoor link
- PE2 does not generate Type3 LSA once type-1 LSA is received from the site
- Traffic is sent over backdoor link instead of MPLS VPN cloud
PE-CE Common Design Consideration:

Sites Belong to the Same Area—Backdoor with Sham Link

• The sham link is treated as a virtual-link: unnumbered, point-to-point, DC link
• The sham link is reported in the router LSA’s Type 1 originated by the two routers connecting to the sham link
• The MPLS VPN backbone or the backdoor link can be made preferred path by tweaking the metrics
PE-CE Common Design Consideration:

Other Scenarios for Area Placement

- Some OSPF sites entirely belong to area 0 and some other sites can belong to non-area 0
- Some sites may consist of hierarchical OSPF topology consisting of area 0 as well as non-area 0
- Both scenarios are valid
PE-CE Common Design Consideration

OSPF Area 0 Placement

- As before, sites may consist of hierarchical OSPF topology consisting of area 0 and non-area 0
- OSPF Rule: Summary LSAs from non-zero area’s are not injected into backbone area 0
- If site contains area 0, it must touch provider PE router
- Use a virtual link so inter-area routes will show up
Database Overload Protection

- PE protected from being overloaded by CE due to large number of received LSAs
- Router tracks the number of received (non self-generated) LSAs
- Maximum and threshold values can be configured
- Only the misbehaving VRF is affected, other works OK
Database Overload Protection

Example

- If threshold value is reached, error message is logged (40)
- If maximum value is exceeded, no more new LSAs are accepted (50)
- If LSA count does not decrease below the max value (50) within one minute; we enter ‘ignore-state’
- In ‘ignore-state’ all adjacencies are taken down and are not formed for ‘ignored-interval’ (40)
- Once the ‘ignored-interval’ (40) ends, we return to normal operations
- We keep the count on how many times we entered ‘ignore-state’—‘ignore-count’ (6)
- Ignore-count is reset to 0, when we do not exceed maximum number of received LSAs for a ‘reset-time’ (120)
- If ‘ignore-count’ (6) exceeds its configured value, OSPF stays in the ‘ignore state’ permanently
- The only way how to get from the permanent ignore-state is by manually clearing the OSPF process
Database Overload Protection (CLI)

- Router mode
 - `max-lsa <max> [<threshold> [warning-only]]`
 - `[ignore-time <value>]`
 - `[ignore-count <value>]`
 - `[reset-time <value>]`

- Available in:
 - `12.3(7)T 12.2(25)S 12.0(27)S`
 - `12.2(18)SXE 12.2(27)SBC`

- With CSCsd20451 deployable without flapping of all neighbors; available in `12.2(33)SXH, 12.2(33)SRC, 12.5`
OSPF Limit on Number of Redistributed Routes

• Maximum number of prefixes (routes) that are allowed to be redistributed into OSPF from other protocols (or other OSPF processes)

• Self-originated LSAs are limited, Summarized prefixes counted

• Type-7 to Type -5 translated prefixes not counted

- PE protected from being overloaded from BGP
Summary: What Have We Learned?

- OSPFv3 has almost similar features as OSPF and similar deployment techniques can be deployed in IPv6 environment
- Scalability of OSPF is very important factor in modern networks deployment
- Understand OSPF fast convergence and resiliency techniques
- Full mesh and hub and spoke environment needs extra tuning in OSPF
- Fast Convergence is almost always required but we should be careful when deploying fast Convergence with NSF
- Lot of things need to be consider when deploying OSPF as a PE CE protocol
Recommended Reading for BRKRST-2337

Source: Cisco Press®
Complete Your Online Session Evaluation

• Give us your feedback to be entered into a Daily Survey Drawing. A daily winner will receive a $750 Amazon gift card.

• Complete your session surveys through the Cisco Live mobile app or from the Session Catalog on CiscoLive.com/us.

Don’t forget: Cisco Live sessions will be available for viewing on-demand after the event at CiscoLive.com/Online
Continue Your Education

• Demos in the Cisco campus
• Walk-in Self-Paced Labs
• Lunch & Learn
• Meet the Engineer 1:1 meetings
• Related sessions
Please join us for the Service Provider Innovation Talk featuring:

Yvette Kanouff | Senior Vice President and General Manager, SP Business
Joe Cozzolino | Senior Vice President, Cisco Services

Thursday, July 14th, 2016
11:30 am - 12:30 pm. In the Oceanside A room

What to expect from this innovation talk

• Insights on market trends and forecasts
• Preview of key technologies and capabilities
• Innovative demonstrations of the latest and greatest products
• Better understanding of how Cisco can help you succeed

Register to attend the session live now or watch the broadcast on cisco.com
Thank you